Date:

Chapter: Chapter 4:2 --> Operations with Matrices

Objectives: Add, subtract, and multiply a matrix by a scalar

Notes:

Coastal Sales Company has three locations in Florida. The matrices below show the average daily wages and sales of all of the representatives.

	Miami		Tampa		Tallahassee	
	Wages	Sales _	_Wages	Sales _	_Wages	Sales
Entry	900	145,000	900	122,000	1050	109,500
Asst.	2400	225,000	1800	145,500	1800	135,000
Assoc.	_2700	290,000	1800	160,000	1800	150,500

- -Can only add/subtract matrices if dimensions are =!!
- -Add/subtract matrices by adding/subtracting corresponding elements
- -To multiply by a scalar, multiply each element by the scalar
- -Commutative and Associative Properties of Addition hold *TRUE* for matrices

^{*}Scalar = The constant by which a matrix can be multiplied; aka scalar multiplication.

Examples:

Ex. 1 - Add or subtract.
a)
$$\begin{bmatrix} -3 & 4 \\ -9 & -5 \end{bmatrix}$$
 - $\begin{bmatrix} -4 & 12 \\ 8 & -7 \end{bmatrix}$ = $\begin{bmatrix} 1 & 8 \\ -17 & 2 \end{bmatrix}$
b) $\begin{bmatrix} -9 & 8 & 3 \\ -2 & 4 & -7 \end{bmatrix}$ + $\begin{bmatrix} -4 & -3 & 6 \\ -9 & -5 & 18 \end{bmatrix}$ - $\begin{bmatrix} -13 & 5 & 9 \\ -11 & -1 & 11 \end{bmatrix}$

Ex. 2 - Multiply.
If
$$S = \begin{bmatrix} 8 & 0 & 3 & -2 \\ -1 & -4 & -2 & 9 \end{bmatrix}$$
 find -4S

2×4

-32 D -12 8

4 16 8 -36

$$\frac{\mathbf{Ex. 3}}{\mathbf{A} = \begin{bmatrix} -5 & 3 \\ 6 & -8 \\ 2 & 9 \end{bmatrix}}, \mathbf{B} = \begin{bmatrix} 12 & 5 \\ 5 & -4 \\ 4 & -7 \end{bmatrix}$$
 find $-6\mathbf{B} + 7\mathbf{A}$

Ex. 4

A small company makes unfinished desks and cabinets. Each item requires different amounts of hardware as shown in the matrices. The company has orders for 3 desks and 4 cabinets. Express the company's total needs for hardware in a single matrix.

Nails Screws
$$3\begin{bmatrix} 10 & 6 \\ 8 & 4 \end{bmatrix} + 4\begin{bmatrix} 16 & 32 \\ 12 & 16 \end{bmatrix} + \begin{bmatrix} 16 & 32 \\ 12 & 16 \end{bmatrix} + \begin{bmatrix} 16 & 32 \\ 12 & 16 \end{bmatrix} + \begin{bmatrix} 16 & 32 \\ 12 & 16 \end{bmatrix}$$

Homework:

Average (+10) --> p. 196 (#12-21)

Advanced (+17) --> p. 197 (#22-34, 37, 41-43)